Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC.

نویسندگان

  • Scot D Liu
  • Cecile Chalouni
  • Judy C Young
  • Teemu T Junttila
  • Mark X Sliwkowski
  • John B Lowe
چکیده

Antibody-dependent cellular cytotoxicity (ADCC) is a key mechanism by which therapeutic antibodies mediate their antitumor effects. The absence of fucose on the heavy chain of the antibody increases the affinity between the antibody and FcγRIIIa, which results in increased in vitro and in vivo ADCC compared with the fucosylated form. However, the cellular and molecular mechanisms responsible for increased ADCC are unknown. Through a series of biochemical and cellular studies, we find that human natural killer (NK) cells stimulated with afucosylated antibody exhibit enhanced activation of proximal FcγRIIIa signaling and downstream pathways, as well as enhanced cytoskeletal rearrangement and degranulation, relative to stimulation with fucosylated antibody. Furthermore, analysis of the interaction between human NK cells and targets using a high-throughput microscope-based antibody-dependent cytotoxicity assay shows that afucosylated antibodies increase the number of NK cells capable of killing multiple targets and the rate with which targets are killed. We conclude that the increase in affinity between afucosylated antibodies and FcγRIIIa enhances activation of signaling molecules, promoting cytoskeletal rearrangement and degranulation, which, in turn, potentiates the cytotoxic characteristics of NK cells to increase efficiency of ADCC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel asymmetrically engineered antibody Fc variant with superior FcγR binding affinity and specificity compared with afucosylated Fc variant

Fc engineering is a promising approach to enhance the antitumor efficacy of monoclonal antibodies (mAbs) through antibody-dependent cell-mediated cytotoxicity (ADCC). Glyco- and protein-Fc engineering have been employed to enhance FcγR binding and ADCC activity of mAbs; the drawbacks of previous approaches lie in their binding affinity to both FcγRIIIa allotypes, the ratio of activating FcγR bi...

متن کامل

Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.

Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen-antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant...

متن کامل

HA Antibody-Mediated FcγRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids

Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated...

متن کامل

GA201 (RG7160): a novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab.

PURPOSE Anti-EGF receptor (EGFR) antibodies and small-molecule tyrosine kinase inhibitors have shown activity in epithelial tumors; however, agents that work by blocking the EGFR growth signal are ineffective when the oncogenic stimulus arises downstream, such as in tumors with KRAS mutations. Antibodies of the IgG1 subclass can also kill tumor cells directly through antibody-dependent cell-med...

متن کامل

Genetic variants of IgG1 antibodies and FcγRIIIa receptors influence the magnitude of antibody-dependent cell-mediated cytotoxicity against prostate cancer cells

Antibody-dependent, cell-mediated cytotoxicity (ADCC) is one of the major mechanisms underlying the clinical efficacy of anticancer monoclonal antibodies (mAbs), such as the mucin 1 (MUC1)-targeting molecule HuHMFG1. IgG antibodies trigger ADCC upon interaction with Fcγ receptors (FcγRs) expressed on the surface of immune effector cells. Polymorphisms affecting FcγRs are known to influence the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer immunology research

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2015